
A Design of Plausibly Deniable Distributted File Systems

Ryouga Shibazaki†, Hiroshi Inamura‡, and Yoshitaka Nakamura*

†Graduate School of Systems Information Science, Future University Hakodate, Japan
‡School of Systems Information Science, Future University Hakodate, Japan

* Faculty of Engineering, Kyoto Tachibana University, Japan
{g2120017, inamura}@fun.ac.jp, nakamura-yos@tachibana-u.ac.jp

Abstract - Data protection has become an important issue
in Internet services. In storage systems, conventional methods
such as full disk encryption are generally used, but this alone
cannot protect against forced attacks of key disclosure. PDE
(Plausibly Deniable Encryption), which enables the denial of
the existence of confidential information, has been proposed,
and by disclosing the decoy key, it has become possible to
protect the user from the force to disclosuse the key. It is
an issue to be considered that the main memory is attacked
at runtime due to the use in the cloud and the spread of vir-
tualization technology. Therefore, we are proposing PTEE
FS that realizes an encrypted file system using the concept of
PDE in a trusted execution environment (TEE). To provide
the resistance to exploit the knowledge from the use of dis-
closed decoy key, we introduce FID unification mechanisms.
Regarding the performance of PTEE FS, we will evaluate the
estimated performance given by the overhead of using TEE
by using a model that imitates actual use on the cloud and us-
ing file synchronization between the server and client as the
actual use model on the cloud.

Keywords: Plausibly Deniable Encryption, OS Security,
Trusted Execution Envirionment.

1 Background

Leakage of confidential data related to privacy endangers
the privacy of data owners and leads to the loss of social cred-
ibility of the leaked organization, so protection of such data
has become an important issue. Traditional methods such as
full disk encryption are commonly used in storage systems,
but these methods make it difficult to maintain confidentiality
when access to computer hardware or administrator privileges
are stolen by an attacker. On the other hand, Plausibly Deni-
able Encryption (PDE), which is a new concept of encryption,
has been proposed[1]. PDE protects confidential information
sufficiently by allowing the existence of information to be de-
nied. By disclosing the decoy key, PDE protects against the
extortion of the decryption key by an attacker. While admit-
ting that the encrypted file system exists in the system, the
attacker is given the decoy key to access the decoy area, but
the existence of the hidden area and its contents are kept se-
cret. From the perspective of storage system configuration,
PDE’s existing research primarily protects sensitive informa-
tion in persistent storage, and it is assumed that the main stor-
age, which controls the existence of confidential information
at runtime, will not be attacked. As an attack on the main
memory, a memory inspection attack is assumed in this pa-

per. This is an attack that illegally takes a snapshot of the
main memory and obtains confidential information.

So far, the purpose of this study is to construct an encrypted
file system that is resistant to attacks not only on the perma-
nent storage device but also on the main storage device and
that can deny the existence using the concept of PDE. We
proposed a system using Intel SGX as a hardware-protected
execution environment in the realization of an encrypted file
system[2].

In this paper, we examine countermeasures against attacks
that are established on the premise that the attacker knows
the existence of the decoy key and decoy data for PTEE FS
(PDE with Trusted Execution Environment File System). As
an evaluation of the processing time in normal access of PTEE
FS, a model that imitates the actual use on the cloud is used,
and the performance is evaluated in consideration of the over-
head due to the use of TEE. In addition, as the processing
time of the program started on demand, the performance is
evaluated in consideration of the additional latency due to the
FID merge processing described in Chapter 5. In the evalua-
tion of processing time in normal access, file synchronization
between server and client is used as an actual usage model
on the cloud. In the evaluation of the processing time of the
program started on demand, the local file created by referring
to the existing research[3] by Leung et al. is used.

2 Related research and related technology

This section describes the concept of Plausibly Deniable
Encryption, its application to file systems, and Intel SGX,
which is being examined for application to the realization of
attack resistance to main memory.

2.1 Plausibly Deniable Encryption
Plausibly Deniable Encryption (PDE) was proposed by Canetti

et al. [1] as one of the encryption methods. Traditional disk
encryption methods including full disk encryption, has the
problem that it cannot be protected if the owner is forced to
disclose the decryption key by an attacker. Therefore, PDE,
which was proposed as one of the methods to protect the
owner from the key disclosure extortion attack, enables the
protection attack by using the decoy key. PDE is a charac-
teristic of using a decoy key, which enables protection from
key disclosure extortion attacks. As shown in Figure 1, PDE
applies special encryption to confidential information that can
be decrypted with both a decoy key and a private key, unlike
conventional encryption. Decryption with the decoy key gives

International Workshop on Informatics (IWIN2021)

99



the decoy plaintext, and decryption with the private key gives
the original plaintext. When the legitimate user is attacked
by an attacker forcing key disclosure, the user can give the
decoy key to the attacker. Since the attacker thinks that the
decoy key is the original private key, it allows the original
confidential information unnoticed and kept secret.

On the other hand, the disadvantage is that the size of the
ciphertext becomes extremely large, which may make the at-
tacker suspicious of applying a special cipher. Furthermore,
traces of confidential information may be obtained from the
file system and the physical storage medium layer, etc., and
considering these, it cannot be said to be a practical method.
However, idea of PDE that decoy key gives decoy informa-
tion and private key gives the confidential information can be
used.

Figure 1: Overview of PDE

2.2 Applications of PDE concept
Using idea of PDE, a method was proposed to bring con-

fidentiality using two types of techniques, steganography and
hidden volume, instead of using simple encryption. First, a
PDE method using the concept of steganography was pro-
posed by Anderson et al.[4] and Chang et al.[5]. The ba-
sic idea is to hide confidential information in ordinary infor-
mation. For example, confidential information is embedded
and saved in a part of a large file such as an image file. In
steganography, there is a risk that the confidential information
will be overwritten when the file in which such confidential
information is embedded is changed. In order to avoid over-
writing confidential information, risk is alleviated by copying
and saving multiple confidential information, but it has the
disadvantage that the usage efficiency of the storage device
deteriorates and a large amount of confidential information
cannot be retained. PDE using hidden volume technology, has
been proposed by Jia et al.[6] and Zuck et al.[7]. File sytem
using hidden volume technology, creates a decoy volume on
a storage device with a decoy key and a hidden volume with
a private key . The decoy volume is placed throughout the
storage device, and the hidden volume is usually placed from
the hidden offset, which is the initial position of the hidden
volume on the storage device, toward the end of the storage
device. When using PDE file system using hidden volume
technology, the user logs in in public mode or PDE mode and
uses the file system. In public mode, user only operate decoy

volumes and in PDE mode, user can operate hidden volumes.
When forced to disclose the key, the owner discloses the login
password of public volume and the decoy key, so that protect
hidden volume and the confidential data from the attacker. In
the hidden volume technology, the existence of the hidden
volume and the hidden offset are unknown in the system that
operates the decoy volume, so the data stored in the decoy
volume may overwrite the hidden volume.

2.3 Intel Software Guard Extensions
Intel Software Guard Extensions (Intel SGX)[8] is a CPU

extension architecture provided by Intel Corporation. Intel
SGX can perform processing that guarantees the confidential-
ity of data even if the privileged user or terminal administrator
is not credible. As shown in Figure 2, Intel SGX create an en-
crypted area called Enclave on memory. Enclave provide a
trusted execution environment (TEE) to enable program exe-
cution while maintaining data confidentiality provided at the
hardware level. Intel SGX can protect the programs and data
in the enclave from memory inspection attacks. Enclave are
called using ECall from untrusted areas. Then, the result pro-
cessed in the enclave is passed to the untrusted area using
OCall. Enclave is executed by the CPU in a special mode
which deny cannot be inspected and tampered by program
outside Enclave. ECall and OCall can achieve confidential-
ity by deny access from cached address to Enclave’s private
memory by program outside Enclave. Intel Corporation pro-
vides the Intel Software Guard Extensions SDK as an envi-
ronment for using Intel SGX technologies.

However, Enclave has a limit size that included both pro-
gram and data, the size is about 100MB. Therefore, the con-
tent to be processed by the enclave must be minimized. For
example, In the existing research[9] using Intel SGX by Ahemed
et al., The policy is to keep only the private key and perform
only the related processing in the enclave. A study measur-
ing the performance of Intel SGX by Gjerdrum et al.[10] has
shown that the overhead increases when the size of the buffer
sent to the enclave exceeds 64 kB.

Figure 2: Overview of Intel SGX

2.4 Measured traffic for file server on the
cloud

In the evaluation, we need to assume a usage model of file
sharing on the cloud. Leung et al. [3] measured traffic for

International Workshop on Informatics (IWIN2021)

100



two file-sharing servers used in NetApp data centers for three
months. One of the servers was used by the marketing, sales
and finance departments, and the other was used by the en-
gineering department. This time, we referred to the statisti-
cal data of the servers used in each department of marketing,
sales, and finance. This server received 364.3GB Read and
177.7GB Write access in 3 months. The ratio of Read, Write,
and Delete requests was 540: 170: 1 in this order. The request
size when accessing the file was about 70 % for less than 1kB,
about 10 % for 1kB or more and less than 100kB, and about
20 % for those over 100kB.

3 Plausibly Deniable Distributed File Systems

The purpose of this research is to realize a plausibly deni-
able distributed file system that is resistant to key disclosure
attacks and also resist memory inspection attacks in virtual
environments.

3.1 Base Design
In our research so far[2], we have designed a prototype of

a distributed file system for key disclosure attacks as follows.
The basic idea of PDE is that using a decoy key or passphrase

will give you information that is allowed to be disclosed, and
using the original private key or passphrase will give you
highly confidential information. In order to realize the ba-
sic idea of PDE, the proposed system provides a mechanism
to switch the contents of the file handled based on the key and
passphrase used for logging in to the file system.

PTEE FS server operates only the encrypted file, and does
not operate the plaintext file, but PTEE FS client encrypts and
decrypts the data and operate plaintext files. The server man-
ages the decoy space and the hidden space. In the hidden area,
highly confidential data such as access keys and passphrase
for other systems that should not be leaked are stored. The
decoy area does not include the data to be saved in the hidden
area, and the data with low risk even if leakage occurs to the
outside is saved. PTEE FS sever has the authorization control
unit that determines whether the key sent from the client is
decoy or authentic and switches the operation protects it us-
ing TEE (Trusted Execution Environment) and performs pro-
cessing. The legitimate client PC and TEE are reliable areas,
and the keys and passphrases used for user authorization are
handled only in those areas. We use the NFS (Network File
System) protocol with necessary modifications.

In propose configuration, it is necessary to switch the ac-
cess destination into the decoy area and the hidden area by
the key presented by the client and switch the structure of the
file system. Code of the structure operation execute in TEE
to prevent leakage and inspection by a snapshot of the main
memory .

Since Intel SGX is used as the TEE, the confidentiality of
the code for these structural operations can be maintained
even when the attacker is a privileged user or terminal ad-
ministrator. Therefore, this configuration can be resistant to
infringement from snapshots of main memory when access-
ing the file system. However, with the TEE built using Intel
SGX, there is a limit to the size of the enclave that can be

used, and there are some that cannot be used for kernel func-
tions such as standard input / output in the enclave. In this
research, we consider the security of the parts that are not
protected by TEE, and propose the system configuration that
protects them.

It is possible to obtain resistance to infringement from snap-
shots of persistent storage devices by performing processing
such as filling empty areas on the file system with random bits
as by Jia et al.[6].

Figure 3: Data flow using TEE in the proposed system

4 Problem

We give a design resist attacks used knowledge from dis-
closure of decoy key, and obtain a practical prospect from the
performance estimation when applied to cloud services. In
addition to the attack methods we have examined so far, we
describe attacks that use knowledge from the disclosure of
decoy keys that have not been examined so far. Next, we ex-
plain the design of this system, and estimate the performance
given by TEE when operating with the access pattern of the
file synchronization service that is often seen in cloud storage
services. In addition, we evaluate the performance of the sys-
tem proposed in Chapter 5 when it is used in a typical work-
load when using cloud storage based on the existing research
by Leung et al.[3].

4.1 Exploiting knowledge from the use of
disclosed decoy key

We explain an attack that uses knowledge from the disclo-
sure of the decoy key. When an attacker whose decoy key is
disclosed can acquire the time series of attacker’s access in-
formation to the decoy area by network traffic or a memory
inspection attack on the server, the time series of access infor-
mation to the hidden area by the private key by the legitimate
user can be obtained, and the existence of the hidden area is
revealed by comparing and collating these.

Regarding attacks using the knowledge of decoy key dis-
closure in PTEE FS, we will consider how the attacks are
possible by monitoring the data exchange at the interface of
TEE, and how to protect them. Figure 4 shows the data flow in
the TEE interface. There are two interfaces, one between the
network and TEE and the other between the persistent stor-
age device and TEE. The information that can be observed in

International Workshop on Informatics (IWIN2021)

101



each interface is defined as follows.

TS1: (TimeSeries1) In the operation time series between the
network and TEE, the exchange of the modified NFS
protocol is observed.

TS2: (TimeSeries2) In the operation time series between the
persistent storage device and TEE, operation sequences
such as fetch and store to the persistent storage device
are observed.

Figure 4: Data flow in TEE interface

Table 1 below shows examples of the contents observed by
TS1 and TS2.

Table 1: Example of TS1 and TS2

TS1 Send Recieve
getattr File (OK, Error) Result
getattr Dir (OK, Error) Result

readdirplus Dir (OK, Error) Result
write File data (OK, Error) Result

read File (OK, Error) Result data
TS2 Send Recieve

fetch ObjectID data Result ObjectID (OK, Error)
store ObjectID data Result ObjectID (OK, Error)

TS1 is represented by the blue line in Fig. 1, and TS2 is
represented by the orange line. TS1 and TS2 are arbitrarily
generated by an attacker as TS1 m and TS2 m (m: malicous),
and those generated by legitimate user operations are TS1 l
and TS2 l (l:legitimate). At this time, the following two at-
tacks can be considered from the information observable on
the TEE interface.

Attack Possibility 1: Because of the attacker observing the
difference between TS1 m and TS1 l, the existence of
the hidden area is revealed

Attack Possibility 2: When TS2 m is externally observable
as an operation result of TS1 m, it is possible to judge
the match between TS1s from the unification of the pair
of TS2 m and TS2 l, and the hidden area Existence is
exposed

We place two assumptions are made as conditions for es-
tablishing ”attack possibility 2”.

Attacker Assumption 1: Correspondence between TS1 and
TS2 TS2 = TEE exposed func(TS1)
can be estimated. This means that it is possible to asso-
ciate the operation series from the NFS RPC time series
to the operations for permanent storage device.

Attacker Assumption 2: It is possible to judge the match
between the elements of TS2. In other words, it means
that the operations on the persistent storage device can
be identified and the unification can be observed.

Therefore, the following two are required to protect confi-
dential information from attackers using the proposed method.

1. ”Attack Possibility 1” is not established

2. Defend ”Attack potential 2” by disabling either ”At-
tacker Assumption 1” or ”Attacker Assumption 2”.

4.1.1 Eliminating Attack Possibility 1

By encrypting the payload part of the RPC of the packet,
which is a component of TS1, the difference other than the
data size becomes unobservable, and the occurrence of ”At-
tacker Possibility 1” can be prevented.

4.1.2 Eliminating Attack Possibility 2

For ”Attack Possibility 2”, the following system configura-
tion is adopted in order to prevent the ”Attacker Assumption
1” from being established. As with the countermeasure for
”Attack Possibility 1”, the part related to RPC of the packet
is encrypted. Regarding TS2, the data itself stored in the per-
sistent storage device will be encrypted. In this configuration,
the persistent storage device side assumes a general disk or a
normal file system, so the object ID used when specifying the
target in the persistent storage device is not protected from
memory inspection attacks. The information obtained by the
attacker at this time is the operation and object ID, the input /
output timing to TEE, and the size of the encrypted part. It is
necessary that the appearance pattern of the object ID in the
IO traffic at the TEE does not provide any clue for attacker’s
tracking using TS2.

5 Design of PTEE FS

To solve the problems mentioned in Section 1, the object ID
used by the attacker to specify in the persistent storage device
observed by the TS2 should be the same between the decoy
area and the hidden area as much as possible. To achieve
this, there is a method of files that exist in any hidden area
is embedded internally in one of the files in the decoy area.

International Workshop on Informatics (IWIN2021)

102



Here, the hidden file is recognized as a free area by the system
that handles only the decoy area.

Similarly, one directory in a hidden area should be em-
bedded inside one of the directories in the decoy area. As
a premise, where the decoy side or hidden side data exists in
the persistent storage object actually read is recorded in the
encrypted area of the persistent storage object. It is safely
confirmes or operated in TEE which one should be accessed
now.

5.1 FID unification procedure
The operation of embedding a hidden file inside a file in

a decoy area in an appropriate directory structure is called
FID unification processing. In the FID unification process,
the same FID can be used by embedding the contents of the
hidden area file in the file located in the appropriate direc-
tory structure of the decoy area. Embedding this file is called
a merge operation. The FID unification process and merge
operation are shown below. The FID unification process is
used for initialization immediately after the proposed system
is applied and for re-unification of unmerged files caused by
file changes during operation. In order to merge the files in
the hidden area into the files in the appropriate decoy area,
the combination is searched to identify the appropriate loca-
tion of the directory structure in the decoy area by the method
shown in Algorithm1.

Algorithm1 operates as follows. First, get the path name
list of all directories in the decoy area and the hidden area,
and pass them to Funciton Search as an argument. In Funci-
ton Search, the directory position of the decoy area, which is
the starting point of the FID unification process, is determined
from the combination of all the directories of the decoy area
and the hidden area. The determination method is as follows.
From the directory position of the decoy area that is the start-
ing point, each directory of the decoy area and the hidden
area has a one-to-one correspondence, and the following uni-
fication suitability evaluation is calculated by the operation
shown in Alogorithm2. The calculation method of the unifi-
cation conformity assessment in Algorithm2 is explained in
Section 5.1.1. The unification relevance evaluation consists
of a mergeable flag and a conformance score. The mergeable
flag is expressed by a boolean value indicating whether the
directory combination can be merged, and when true, it indi-
cates that the merge condition is satisfied. The calculation of
the unification suitability evaluation is made into a memo, and
when it is necessary to calculate the score of the same combi-
nation, it is called from the memo to shorten the calculation.

Among all combinations, the one with the maximum opti-
mal score is selected from the ones for which the mergeable
flag is true, and the directory position of the decoy area that
is the starting point of the FID unification process is deter-
mined. If none of all combinations have the mergeable flag
set to true, the one with the highest matching score is taken
out and judged to be at risk based on that combination. Al-
gorithm1 performs the processing up to this point and returns
that the directory location of the decoy area that is the starting
point of the FID unification process, or risk. The FID unifica-
tion process recursively merges files or notifies the user of the

risk based on the result received from Algorithm1. There is a
risk, that is, the mergeable flag obtained by Algorithm2 is not
true because there are not enough decoy files in the decoy di-
rectory to be merged. Therefore, it calculates how many files
should be added to which directory in the decoy area, and also
notifies the user.

5.1.1 Conformance score

The conformance score integrates the conformance values for
a specific file to be merged, and the larger the conformance
score, the better the combination of the corresponding direc-
tories. A high match score means that the percentage of files
in the decoy area where hidden area files are not embedded is
high. In other words, if the conformance score is high, even
if a new file on the hidden side is added or a file on the decoy
side is deleted, there is a high possibility that the FID unifi-
cation process can be performed only within the combination
of the corresponding directories. It is used as a conformance
score of the FID unification process. The average size of the
files in the directory is the size of the decoy area as pSize,
the size of the hidden area is as sSize. The number of files
in the directory is the number of decoy areas as pNum, and
the number of hidden areas as sNum. The calculation of the
mergeable flag is (pSize/sSize + pNum/sNum)/2 >= 2
The calculation of the conformance score is pNum/sNum

6 Experiment

In this section, in order to consider the validity of the design
of PTEE FS, the evaluation is performed using the verification
case from the following two points.

Processing time in normal access :
For the performance when applied to the cloud service
of Section ??, first, we get the trace data of the file
system acquired under assuming a realistic file group
workload. The processing time is estimated applied our
performance model [2] to the trace data got.

Regarding the FID unification process, we evaluate the ef-
fect of the smallest process among the FID unification pro-
cesses that occurs when used in a typical workload. When the
same usage as the file system using the existing PDE concept
is used, it is the most called process in the proposed method,
and the impact on the user is significant. So, we evaluate the
effect of the additional latency to gave by FID unification pro-
cess.

Create an environment that assumes the use case described
in Section 6 of the proposed system, operate the FID unifica-
tion process under that environment, and perform an evalua-
tion experiment.

6.1 Experimental method
We prepared a decoy area directory and a hidden area direc-

tory according to the workload of the use case, and performed
the FID unification processing. For the decoy area directory,
referring to the existing research[3] by Leung et al., We pre-
pared 70% for files with file sizes from 1 byte to 1 kB, 10%

International Workshop on Informatics (IWIN2021)

103



Algorithm 1 Algorithm to search for the best directory combination
1: function Serach(secretDirs, publicDirs)
2: if secretDirs.length > publicDirs.length then ▷ If the hidden area has more directories than decoy area, no search

is performed because there is no matching pattern.
3: result ⇐ noMatch
4: return result
5: allMatch ⇐ allPermutaitionPatern(publicDirs) ▷ Calculate and substitute permutation patterns for directories in

all decoy areas
6: for i = 1, · · · , allMatch.length do ▷ Repeat the process for the number of allMatch
7: for j = 1, secretF ileNum do ▷ Repeat the process for the number of file in hidden area
8: if resultMemo[j][allMatch[i][j]] = null then
9: score ⇐ CheckMatchDir(secretDirs[j], publicDirs[allMatch[i][j]]) ▷ Get the mergeable flag and

optimal value for a combination of a directory in a decoy area and a directory in a hidden area
10: resultMemo[j][allMatch[i][j]] ⇐ score ▷ Save the score you have done once in a memo
11: else
12: score ⇐ resultMemo[j][allMatch[i][j]] ▷ When the same combination appears, call it from the memo
13: throghScore[i].optimal ⇐ score.optimal ▷ Accumulate scores in the current permutation pattern
14: if score.conform = false then
15: throghScore[i].conform ⇐ false
16: throghScore[i].optimal ⇐ −1

17: if max(throughScore[i].optimal)! = 1 then ▷ Check if there is a mergeable combination
18: result ⇐ argmax(throughScore.optimal) ▷ Get the permutation pattern with the highest conformance score
19: else
20: result ⇐ noMatch
21: return result

for files with a file size of 1 kB to 100 kB, and 20% for files
with a file size of 100 kB or more. We prepared three types
of files, 30 and 50, contained in one decoy directory. For the
hidden directory, referring to the key management of pgp, it
was decided that the public key and private key pair of pub-
lic key authentication, which is asymmetric authentication, is
assigned to each directory. Two types of files, 10 and 20, are
prepared in one hidden directory. If the number of files is 10,
there are 5 public / private key pairs, and if the number of
files is 20, there are 10 public / private key pairs. In the ac-
tual experiment, assuming that user use so that the number of
files on the hidden area side is sufficiently small in PDE file
system. We experiment 2 pairs of decoy area directory and
hidden area directories. One pair is that the number of files
in the decoy area directory is 30 and the number of hidden
area directories is 10. The other is that number of files in the
decoy area directory was 50 and the number of hidden area
directories was 20. We excute the FID unification processing
in these 2 pairs and the execution time was measured.

6.2 Experiment environment

A computer with RSYNC and NFS Version 3[11] installed
was used as the server and client for the experiment. Wire
Shark was used to trace the traffic. The network bandwidth in
the experimental environment was 6.90 MB/s.

7 Evaluation

The average time required for FID unification is 133.8 ms
with 30 files in the decoy area and 10 files in the hidden area,

and 134.6 ms with 50 files in the decoy area and 20 files in
the hidden area.

8 Conclusion

We improved our design of Plausibly Deniable Distributed
File Systems to obtain resistant to key disclosure attacks. Two
experiments were conducted and evaluated in terms of perfor-
mance in order to validate the design. In the experiments and
evaluations, we discussed the processing time for normal ac-
cess in use cases applied to cloud services. In the file synchro-
nization use case using rsync, the increased radio in response
time by the use of TEE is estimated with measured figure.
The result is 0.010%. increase for whole operation, which is
considered to be acceptable overhead by TEE. To provide the
resistance to exploit the knowledge from the use of disclosed
decoy key, we added new functionalities of the FID unifica-
tion as a countermeasure to memory inspection attacks. The
processing time of the FID unification process invoked on de-
mand was tested and evaluated using a program implemented
in python.

The processing time of the FID unification process is 1133.8
ms in an environment with 30 files in the decoy area and 10
files in the hidden area, and 134.6 ms with 50 files in the de-
coy area and 20 files in the hidden area. Therefore, the ad-
ditional latency due to the FID unification process may be
tolerated. However, in this evaluation, the cost of encryption
processing is not added to the processing time. Examination
of a performance model that includes these is a future work.

International Workshop on Informatics (IWIN2021)

104



Algorithm 2 Algorithm for calculating the unification aptitude score
1: function CheckMatchDir(secretDir, publicDir)
2: publicF iles ⇐ getAllF iles(publicDir) ▷ Get the file entry for the target decoy area directory
3: secretF iles ⇐ getAllF iles(secretDir) ▷ Get the file entry for the target hidden area directory
4: publicF ileSizeMean ⇐ publicF iles.sumSize/publicF iles.fileNum ▷ Get the average file size of the decoy area

directory
5: secretF ileSizeMean ⇐ secretF iles.sumSize/secretF iles.fileNum ▷ Get the average file size of the hidden area

directory
6: if publicF ileSizeMean/secretF ileSizeMean > 1 then ▷ Check if the average file size meets the conditions
7: sizeScore ⇐ true
8: else
9: sizeScore ⇐ false

10: if publicF iles.fileNum > secretF iles.fileNum then ▷ Check if number of files meets the conditions
11: fileNumScore ⇐ true
12: else
13: fileNumScore ⇐ false

14: if sizeScore&fileNumScore then
15: conform ⇐ true
16: else
17: conform ⇐ false

18: if conform then ▷ Check if both the average file size and number of files meets the conditions
19: optimal ⇐ publicF iles.fileNum/secretF iles.fileNum ▷ If the mergeable flag is true, the optimum value is

calculated.
20: else
21: optimal ⇐ 0

22: return (conform, optimal) ▷ Returns mergeable flag, conformance score

REFERENCES

[1] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail
Ostrovsky. “Deniable Encryption”. In Burton S. Kaliski,
editor, Advances in Cryptology — CRYPTO ’97, Lecture
Notes in Computer Science, pp. 90–104. Springer Berlin
Heidelberg, 1997.

[2] Shibazaki Ryouga, Inamura Hiroshi, and Nakamura
Yoshitaka. “Design of Encrypted File System Using
the Concept of PDE”. Proceedings of the 82th National
Convention of IPSJ, Vol. 82, No. 1, pp. 103–104, 2020.

[3] Andrew W. Leung, Shankar Pasupathy, Garth Goodson,
and Ethan L. Miller. “Measurement and Analysis of
Large-Scale Network File System Workloads”. In 2008
{USENIX} Annual Technical Conference ({USENIX}
{ATC} 08), 2008.

[4] Ross Anderson, Roger Needham, and Adi Shamir. “The
Steganographic File System”. In Information Hiding,
pp. 73–82. Springer, Berlin, Heidelberg, April 1998.

[5] B. Chang, F. Zhang, B. Chen, Y. Li, W. Zhu, Y. Tian,
Z. Wang, and A. Ching. “MobiCeal: Towards Secure
and Practical Plausibly Deniable Encryption on Mo-
bile Devices”. In 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN), pp. 454–465, June 2018.

[6] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu.
“DEFTL: Implementing Plausibly Deniable Encryption
in Flash Translation Layer”. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, pp. 2217–2229, New York,

NY, USA, 2017. ACM.
[7] Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan

Tsafrir. “Preserving Hidden Data with an Ever-
Changing Disk”. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, pp. 50–
55, New York, NY, USA, 2017. ACM.

[8] “Intel® Software Guard Extensions (Intel® SGX)”.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
software-guard-extensions.html. (ac-
cessed 2021-06-11).

[9] Rufaida Ahmed, Zirak Zaheer, Richard Li, and Robert
Ricci. “Harpocrates: Giving Out Your Secrets and
Keeping Them Too”. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pp. 103–114, Seattle, WA,
USA, October 2018. IEEE.

[10] Anders T. Gjerdrum, Robert Pettersen, Håvard D. Jo-
hansen, and Dag Johansen. “Performance of Trusted
Computing in Cloud Infrastructures with Intel SGX:”.
In Proceedings of the 7th International Conference on
Cloud Computing and Services Science, pp. 696–703,
Porto, Portugal, 2017. SCITEPRESS - Science and
Technology Publications.

[11] B. Callaghan, B. Pawlowski, and P. Staubach. “NFS
Version 3 Protocol Specification”. https://www.
ietf.org/rfc/rfc1813.txt, June 1995. (ac-
cessed 2019-12-24).

International Workshop on Informatics (IWIN2021)

105




